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DIFFRACTION OF ELASTIC WAVES BY TWO COPLANAR
GRIFFITH CRACKS IN AN INFINITE ELASTIC MEDIUM

D. L. JaINn and R. P. KanwaL

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania

Abstract—The problem of diffraction of normally incident longitudinal and antiplane shear waves by two
parallel and coplanar Griffith cracks embedded in an infinite, isotropic and homogeneous elastic medium is
solved. Approximate formulas are derived for the displacement field. stress tensor, stress intensity factors, far-
field amplitudes and scattering cross section when the wave lengths are large compared to the distance between
the outer edges of the two cracks. By taking appropriate limits we derive various interesting and new results.
Furthermore, we derive the solution of the corresponding problem of diffraction of a plane acoustic wave by two
rigid coplanar and parallel strips.

1. INTRODUCTION

THE problem of diffraction of elastic waves by various two and three-dimensional con-
figurations of practical interest has attracted considerable attention. In this paper we present
the solution of the problem of diffraction of normally incident longitudinal and antiplane
shear waves by two symmetrical coplanar Griffith cracks located in an infinite, isotropic
and homogeneous elastic medium. The faces of each of the cracks are assumed to be separa-
ted by a small distance so that, during small deformations of the solid, the crack faces do
not come into contact. A simple integral equation technique enables us to obtain approxi-
mate values of the displacement field, stress tensor, stress intensity factors, far-field ampli-
tudes and scattering cross section. In the elastostatic limit, we derive the value of the stress
distribution in the neighborhood of two parallel and coplanar Griffith cracks which are
opened by a constant pressure along the cracks. The limiting results so obtained agree with
those obtained by Lowengrub and Srivastava [1].

By making the distance between the inner edges of the cracks tend to zero, we solve the
diffraction problem for a single Griffith crack. The value of the stress intensity factor so
derived agrees with the one given by Mal [2] while the formula for the scattering cross
section even for this limiting case appears to be new. Furthermore, from our analysis we
also obtain the formula for the scattering cross section of two perfectly rigid parallel and
coplanar strips in acoustic diffraction.

Consider a rectangular cartesian coordinate system such that these cracks are located
in the region —a<x< ~bb<x<a, —0 <y< o, z=0.Itis convenient to nor-
malize all lengths with respect to a which is half of the distance between the outer edges of
these cracks. Then by setting ¢ = b/a, the cracks are defined by equations ~1 < x < —¢,
c£x<l, ~o<y<o,z=0.

Let a plane harmonic elastic wave (the factor e~ ** is suppressed throughout the analysis)
originating at z = — oo be incident normally on the cracks. This wave can be decomposed
into a longitudinal (or P) wave and a shear (or S) wave. The displacement field in the P
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wave is paraliel to the direction of propagation which in the present case is the z-axis.
The speed of P wave is {(4 + 2u)/p,}*, where 4, u are the Lamé constants and p,, is the density
of the medium. The S wave has a displacement field polarized in the plane perpendicular
to the direction of propagation i.e. the plane z = 0 and its speed is (u/p,)*. The S wave can
be further decomposed into SV and SH waves. They produce the displacement fields
parallel to x-axis and y-axis, respectively. As is well known, the boundary value problems
associated with each of the above three components of the incident field can be formulated
independently of the other two. Since the diffraction problems relating to SV and P waves
are similar in nature we shall consider only the SH wave.
The dimensionless numbers in this analysis are

wipga?)t wlpoa®\? m,
= [Pt ) = L=t L1
m, ( A.+2’J m, n T m, ( )

2. INCIDENT P WAVE
In this case the incident field u'®(x, z) is given as
u®x, z) = im A, e™7e;, 2.

where e, is the unit vector along z-axis. Thus, the only non-vanishing components of the
incident displacement and stress fields are

u(x, 2) = im, Aq ™", %9 = p,e™? 2.2)

where p, = —pya’w’4,.
The scattered field u(x, z) can be represented completely in terms of two scalar potentials
é){xy Z),j = l) 29 such that

09,  9¢,

0, d¢,
ux, z) e u,x, z) =0, u,x,z) = P +E-, (2.3)
and ¢, and ¢, satisfy the Helmholtz equations
Vip,+mip; =0, j=1,2 (2.4
The values of the components of the stress tensor are
3¢, ¢, 3¢,
Faz ﬂ{28x62+ ox? " 8z2 }’ B =0, (25)
é? o’
= 2.2 " g, —22-22
Ty = u{(mz-i-Zaxz)d), Zaxaz}. (2.6)
The boundary conditions are
16,20 =0, T2+t 2)=0,z=0, cx<|x<], (2.7)
u., u,t, and T1,,arecontinuousacrossz =0, x| <c, x| > 1. (2.8)

In addition, we have to satisfy the radiation conditions at infinity and the edge conditions
at the tips of the cracks.
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We seek the solutions of the Helmholtz equations (2.4) in the form

® 1 \P(p) ,
¢1(x5 Z) = —if_w (pz___z_mg)y_(f)_e'l’x‘?ﬂzl dp’ (29)

and

6%, 2) = :f pP() e Tl dp, 220, 2.10)

where
(pz—m;)i9 P Z m~, .
y}.={ _ 2’ . ! j=12, (2.11)
—imj—p*),p < my,
and where P(p) is an unknown function to be determined from the remaining boundary
conditions. Putting these values in the representation formulas (2.3), (2.5) and (2.6) we
obtain

ulx, z) = f P[,}i(Pz —mj)e Vil -y, e—yzlz'iIP(P) e'?* dp, (2.12)
- © 1
ufx,z) = +i f [(p? —4m3)e 1l —p? e~ 721l P(p) e'P* dp, z 2 0, (2.13)

tx2) = Fu [ plepiomde - @pt-md e PG P dpz 20, (214
i) = i | [)i(p’-&mé)(m%—zpﬂe‘"“w2p’v2e'"'=] PRerdp.  (215)
- ® Y1

With the help of the foregoing relations, the boundary conditions (2.7), (2.8) and the
evenness of the function P(p) yield the dual integral equations

f P(p)cospxdx = 0, |x| < ¢, x> 1, (2.16)
0
and

e 1 ,
J [pz*/z——(pz—%ma’}P(p) cospxdp="2,  c<ixl<l  (217)
0 "1 4y
To solve them we set
1 1

P(p) = EJ. h(x3) sin px, dx,, (2.18)
where the function h(x?) will be soon determined. For the interval x| > 1, equation (2.16)

is automatically satisfied in view of the formula
3

* sin px, cos px 2,|x| < X1
f -—”‘;)——Ldp= (2.19)
0

0, x| > x,.
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Furthermore, from equations (2.16)<(2.19) we derive the following relations in h(x?):

1 o
f j h(x?)sin px, cos px dp dx, = f f f h(x?)
c Yo m;—

2u(m
2 1 2 232
X l—m 2—;—{p ~3im?) sin px, cos px dp dx,, c<six <L, (2.20)
l 1
and
1
f h(x})dx, = 0. (2.21)

By using the relations

sinpx,sinpx =«
% —2-(tx1)*J§(px)J*(pxl), (2.22)
and
2p * wJo(pw) dw
Jy(px) = (nx) . ‘&‘g—_“;vz—){, (2.23)

and after some simple manipulations, equation (2.20) can be written as the integro—differen-
tial equation :

xlh(xl)dx1 _ J‘ X2 J’ J"“ vwL,(v, w)dvdwdxl

where
P, = ipg/au(l1—1%), 1©=m;/m,
and

® 2 1
Ly, w) = f {P"m[[’zh";(l’z"‘%m%)z]}-]o(puuo(l’w')dP- (2.25)

0

Thus, the function h(x?) is to be determined from equations (2.24) and (2.21).
By using Noble’s contour integration technique [3], the kernel L,(v, w) can be written
as

2- 2.4 1 1 1
Li(v,w) = 1"-':2:2 J; { 2)*{!) ) Jolpm v)Hy (pm, w)

21 — p2y
+p—(—T—JQ—JO(pm2v)H5"(pmzw)} dp, w > v (2.26)

The value of this kernel for w < v is obtained by interchanging v and w. The form (2.26)
is suitable for expanding L,(v, w) in powers of m, and m, such that m, « 1. Thus m, « 1,
m; = ((m,). When we substitute the series expansions for the Bessel function J, and the
Hankel function HY", we get from (2.26)

Liv,w) = —[c;milogm,+(c,+c,logoym? +0(mélogm,)], v>w,  (227)
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where
_(3r*-41743)

= W, (2.28)
_ (3r*—41i4)) nf2y . log2 s 5
c; = A=) logr-i—2 ——ije 4(1—_1—2)(111: —121*+5)
4 2 2

+{Ny(1+19)+7°No], (2.29)

1
N,, = f p"(1-pH*togpdp, n=012,..., (2.30)

0

and y is Euler’s constant.
In particular

Ny = -g(l +logd), N,= 6—’;(1 ~4log2). @2.31)

Let us now expand h(x?) in the form
1
h(x}) = -,;l—z[ho(ﬁ) +(m3 log myh,(x3)+m3hy(x}) + mi(log my)*hy(x3) +Om3 log my)], (2.32)
2
and substitute this expansion as well as the expansion (2.27) of L,(v, w) in equation (2.24),

equate the coeflicients of equal powers of m,. Thereby we get the following equations for
determining the unknown functions h{x3),i = 0,2,3,...:

YxhoxHdx; = 1

J: 1;;(_1))‘2 1 FPo, ek J: ho(x2) dx, = 0, (2.33)
1 h 2 d 1 1

J‘ x‘xl_z(iljc_lxl = -c,f xiho(xf}dx,, c<x<1; J. hix3)dx, =0, (2.34)
c 1 ¢ R

logv;v2w

[t o 4 e [ vw{k’g wiw v} o dwe
. xi-x? taxJ, Ve Jo F—whxi - vt

|

1 1
-c;J‘ Xyho(x?) dx,, c<x<1l; f hz(x_f)dx, =0, (2.35)

Y x ha(x?)dx ! !
J; JG}L:!J%)“L = -—c,j; x hy(x?) dx,, cEx<1; J: hy(x3)dx, = 0, (2.36)

and so on. It has been shown by Lowengrub and Srivastava [1] that the solution of the
integral equation

Jl x;h(x3)dx, xf(x), c<ixl <1, (237

x%—x? 2



966 D. L. Jain and R, P. KANWAL
subject to the condition
!
f h(x?)dx, =0, (2.38)
<

where f(x} is a known even function, is

2[x? =2\ 1 —=x2\ Y xf(x) 2 1-x*\?*
2) e TR
hixy K(l__x%) fc (xz__ez) P d‘chm!‘_(x1 1)*(1—:*)*]( s xflx)dx

Uix? o\t dx
X J; (ll—xf) 7‘*‘1—» (2.39)

X* — X7

while F = F(n/2, (1 — c*)}) is the elliptic integral of the first kind.
With the help of relations (2.37)-(2.39) we obtain the solutions of equations (2.33)-(2.36)

as
3 _ _ Polxi—E/F]
ho(xl) = {(xf——c")(l——x‘})}*’ (2.40)
. 2 _ 2
bty = CiPo (L€ = 2B/ ~E/F] e

2 {ed=eAI=xiyt

o) = do[x} = E/F]—(c,/)[(x2 —c*)(x} =41 — c}) —(E/6)F(1 + c*) +(c*/2— c2/6)]
o {xi -1 —xhh}?

(x2 — E/F)(1 = E/F)+ {x3(x} = c?)}
< AYAE/2, (1 = 1 = x5, (=) = = (1 = DI/ F?

—Pye, {(x I 2)}* (2.42)
2 _ CiPo 2_ 2 (xi~E/F)
hath) = 81+~ 2E/F) [{ T *] (2.43)

where E = E(n/2, (1 —c?)?) is the elliptic integral of the second kind and IT is the elliptic
integral of the third kind

(e, n? k)—Jw dx
P15 K = o (1—n?sin? a)(1 —k?sin® a)?

n/2
I = f sin? 6(sin? § + ¢* cos? OH{1U(n/2, sec? 0, (1 — 2Py —F} db,

0
and

s —eyt
do = = Z[1+¢? ?.E/F}~~~[(1+€‘>‘°8(I C) “:F‘1 " e )]'

Thus, the value of the required function h(x?) is known up to O(m} log m,).
Let us now evaluate some quantities of physical interest.
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Stress intensity factors
The stress intensity factors K, and K, are defined as (in physical units)

Kl = xl-iorln-f (a)*[(x - 1)*{Tz:(xa O)}]x> 1> (244)
= lim @~ 2P {ralx Ol (243)

The value of the stress component 1,, can be evaluated from the formulas (2.15) and (2.18)
when we substitute the value of the function h(x?) as obtained above. We spare the reader
of the details. After evaluating the value of 7., and putting it in relations (2.44) and (2.45)
we obtain

Ky =1 2(’;"( )2)} - {(1 —E/F)—%(l +¢2—2E/F)(1 - E/F)m? log m,
+ [do(l E/F)—-——{—lz-——é-—gﬁ(l+c2)} —cl{(l—E/F)z—(l-c )(1+-'— }]mg
2
+%(1 +¢2—2E/F)*(1 — E/F)m} log m,)* + 0(m} log mz)} , (2.46)
and
4
K, = [-ﬂ”ll’i_%]—*{w/r - c’)-——c—’(l +¢? = 2E/F)(E/F — c*)mZ log m,
4
¥ [do(E/F-cz)— Sll+e 2)+--52—) c,{(E/F—cﬂ(l—E/F)+(1—c’)%}]m§
2
+%‘(1 +¢2 = 2E/FE/F — c?)(m2 log m)? + 0(m? log mz)} . (2.47)

We have plotted the values of K, and K, in Figs. 1 and 2 (for 2 = 1/3).
In the limit when c — 0, we recover the stress intensity factor for one Griffith crack
occupying the region |x| < a4, 0 < y < 00,z = 0:

K, =p°‘/a{1——£1m§logm2 %mz-i— (m log m,)* +0(m logmz)}, (2.48)

which agrees with the result of Mal {2].
On the other hand, when @ — 0 (the elastostatic limit), ie. m, ,m, —» 0and 4, - —©
such that p, tends to constant pressure P,, relations (2.46) and (2.47) yield the stress in-

tensity factors when two Griffith cracks are opened under constant pressure P,. These
limits are

P,a? (1—
{2ala® - b*)}*
which agree with the results given by Lowengrub and Srivastava [1].

Let us observe that by assuming the solution in the form (2.18) we have satisfied the
edge condition as this relation implies that the stresses at the crack tips have the required

K, = E/F); K, = 2E/F—b?), (2.49)

P,
TP
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square root singularity. Indeed, if we calculate the value of the component u, of the normal
displacement at the face of the crack and use relation (2.20), we find that u,(x,0+) = 0,
atx =landx =c

Far-field amplitude and scattering cross section
It is convenient to introduce polar coordinates.

x = Rsin @, z = Rcosé. {2.50)
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Then from relations (2.9) and (2.10) we readily derive, by the method of steepest descent,
the asymptotic formulas
exp i(m,R —n/4) 322 1 .
¢4(R, 6) m, R (2r)*m{(sin* 0 372 P(m, sin 8); , (2.51)

and
exp i(m,R —n/4)
(mzR)*

as R — oo. Hence, the asymptotic values of the displacements ug(R, 6) and uy(R, 6) follow
by putting the above values in relations (2.3). The results are

(R, 0) ~ {(2n)*(m? sin @ cos B)P(m, sin 0)}, (2.52)

iexpi(m,R-n/4)l Y 1 .
ug(R, 6) i Ry G| sin? 05| Pm, sin 0), (2.53)
ug(R, 6) ~ 2P ;f;"’RR) - /4 mytm3 sin 6 cos 6 Pm, sin 6), (2.54)
2

as R — oo, where
P(m;sin 0) = 4( )[(1 +c¢*=2E/F)—4c,(1+c*—2E/F)*’m3 logm,

2
+m2{do(l+c —2E/F)— (i+%—ﬁ(l+c2))

-c,[(1+c —2E/F)(1—E/F)=2(1— cz) 4= ((1+c2)E/F G- cz))]}

2 2
‘1 2_ 32 2 M a3 ¢ 3, E 2
+4(1+c 2E/F)*(m3 log m,) 6 sin 6(4+ 2+ c* F(l+c)

+0(m3 log mz)],j =12 (2.55)
Hence, the radiation condition is satisfied. Writing relation (2.53) as
ug(R, 6) ~ ( ) (expl(m R——)) 6),

we have the value of the scattering cross section [4],

4a
= ———S(g(0
) ~mA, (2(0))

p

_ mfamj(3t* —41* + 3) )
oo [ +¢* —2E/F)* +0m} log m;)]. 2.56)

In the limit when ¢ — 0, we get the corresponding value for one Griffith crack

T - nZam3(31* —41% + 3)
T 32¢(1—-1?)?

14

[1 +0(m2 log m,)]. 2.57)

As far as the authors are aware even this limiting formula is new. We have plotted the
formula (2.56) for the value of (3 ,/a) in Fig. 3.



970 D. L. Jain and R. P. KaNwaL

° °
nN (]

Scottering cross section for the P-wave
Q

FiG. 3.

3. INCIDENT WAVE IS SH WAVE
For an incident SH wave we have
u%(x, z) = iB, e™*e,, (3.1

where e, is the unit vector along the y-axis. Thus, the only non-vanishing components of
the incident field and the corresponding stress tensor are
wWO(x, z) = iBye™*, 7P = g4, 3.2)

where g, = - uBym,. Consequently, the displacement vector and the corresponding stress
tensor due to the scattered field have, respectively, u, and 7,, as the only non-vanishing
components needed in the sequel. As in the previous section we assume their values as

]

ufx,z2) = F J‘ Q(p) e'P=—ralzl dp, 250, (3.3)

and

ty = f 720(p) 7<= 135 dp, (3.4)

where y, is defined as in (2.11).
The boundary conditions for this problem are

T, +Tg =0, z=0,c<[x<1,

. 35
u, and 1, are continuous across z = 0, x| < ¢, {x} > 1.} (3:5)

In addition, the radiation condition and the edge condition are to be satisfied. Relations
(3.4) and (3.5), yield

2#_[ 72Q(p) cos px dp = —qo, c<x<1, (3.6)

0o
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while from (3.3) and (3.5) we obtain
f Q(p)cospxdp=0, O0<|xl<ec, |x>1,
0

where we have used the even character of the unknown function Q(p).
As in the previous section we set

1 2
) = ;J; g(x1) sin px, dx,, (3.7)

and follow the same steps which led us to the integro-differential equation (2.24). The
corresponding equation for the present problem is

) d, ** woLy(0, W) do dw dx,,

subject to the condition

1
f glx})dx, =0, 3.9)
where Qo = —go/(unm,) = By/m, and

La(o,w) = f " [P~ 12 olov o(pw) dp

1
= im3 f (1= PRI opmawH Dm0 dp, 0> w, (3.10)
0

with v and w interchanged when w > v. In this case also, our analysis is based on the
assumption m, « 1; and the expansion of L,(v, w) is

L,(v,w) = ~4mZlog m,+(e, —}logv)mi+0(m3logm,), v>w, (3.11)
where
e, =31 + in—2y+4log2).

Now we put the expansion
g(x}) = mygo(x3)+m3 log myg,(x3) +mig,(x3)+my(m3 log m;)’gs(x3) +0(m3 log my), (3.12)

and the expansion (3.11) of L,(v, w) in equations (3.8) and (3.9) and equate the coefficients
of equal powers of m,. The resulting integral equations in functions g,,8,,g,, g3, can be
solved in a fashion similar to equations (2.33)-(2.36). These solutions are

_ _ Quxi—E/F)
gO(xl) {(xg_cz)(l —xf)}*, (313)

(x} — E/F)
{x}-cHa-xit’

g, (x?) = Q°(1 +c2—2E/F) (3.14)
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g,(x}) = Qo[‘"’

(x — E/F)—}{(x} — B (x] — 31— c?)—(E/6F)(1 + ) +(c*/2 - c2/6)]
{(xl_c (1-x 2)}4k

(x} - E/F)(1 — E/F)+{x{(x{ - ¢*)}

_% x {(1/F)(r/2, (1 = c})/(1 - x}), (1 = cH)}) =1} =(1 = A)/F? 5.15)
2 {xi=cHa-xphi? C
1—E/F

where
1—-c?

e = %1_(1 +cz—2E/F)—%[(1 +c?)log

t 2E (1-cHf
~F log p .
Thus, we have obtained the value of the unknown function g(x?) up to 0(m3 log m,).

Stress intensity factors
Using the foregoing relations in (3.4), we obtain

xlg(xf) dx1 ; *t woL,(v, w) dv dw dx,
(Tyalx, 0)],;;<c—2 f — Zuf glx )ff W o) (3.17)

Then the stress intensity factors (m physical units) are
Kl = —l'llnzo (a)*{(x - 1)*[Iyz(x’ 0)]x> 1}

- 4o(a)
{201-

1(1 ¢ , , I ,
+| eoll ~E/F) =7 E‘E"sF(l”) - (1 E/F)~(1=c)|1+55) ¢ |m]

+IIE(1 +c2—2E/F)*(1 — E/F)(m? log m,)* + 0(m% log mz)} , (3.18)

1
2)}4}{(1 _E/F)_Z(l +c¢?—-2E/F)(1 — E/F)m3 logm,

KZ = hm_ (a)*{(c - x)*[rn(x, 0)]: <c} ’

— gola)* 2 R
= Gai-oE B e )*-(1+C ~2E/F)(E/F —cYm} logm,

4

2
+ [eo(E/F—cz)—%{é?(l +c2)+%—%} —% {(E/F—cz)(l -E/F)+(1 -c’)%}]rni

+%(1 +c2 = 2E/F)(E/F — c*)(m3 log m,)* +0(m$ log mz)} . (3.19)

These values of K, and K, are plotted in Figs. 4 and 5 (for 2 = 1/3).

When ¢ — 0, we recover the stress intensity factor for a single crack which agrees with
Mal’s result [2].

On the other hand in the elastostatic limit, when @ —+ Oie.m,, m, - 0and By - —©
such that g, —» Q,, relations (3.18) and (3.19) yield the stress intensity factors when the
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Stress intensity factor (K./a,,\/«;) for the S-wave
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faces of two Griffith cracks are subjected to prescribed constant shearing stress, namely

TylX,2) = — @y, z=0, cgix 1.

Thus in this case,

_ Q,a’° _ . = Ql. - -
K,-—m(l E/F); K, {zb(a2—b2)}*("2E/F b?). (320)

As pointed out in the case of P-wave, we have satisfied the edge condition by assuming
the solution in the form (3.7).

Q 1%
R @ e

Stress intensity factor (X, /q, \/5) for the §-wave
Q
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Far-field amplitude and scattering cross section
To find the far-field amplitude we proceed as in Section 2 and find that

+
ufR, 0 ~ (m2 ){expz(mzR n/4)}j#) as R — o, (3.21)
where

j6) = —;Bomi cos 0{(1 +c? —-2E/F)--3(1 +c?—2E/F)*m? logm,

1{1 ¢* 1 E 1
2 2 _ —— 4 _ P
+m2[eo(l+c 2E/F) 4(4+ 6 +-—c4 _(3F 1+¢ )) 5

X {(1 +c*—-2E/F\1-E/F)-2(1 —cz);_l—2+§[(l +c?)E/F—(3 —cz)]}

sin@{3 ¢* 3 2
% (4+2+—c —-(l+c))]
+—ll-8(l+c —2E/F)*(m3 log m,)* + 0(m? log mz)} ) (3.22)

Thus the radiation condition is satisfied. From (3.21) and (3.22) we have the value of the
scattering cross section (in physical units) [4],

4a
J(H0
5 U0)

2 3
=T ‘;"‘2 [(1 + ¢ —2E/F)* + O(m? log m,)]. (3.23)

The value of (3,,/a) is plotted in Fig. 6 (for t2 = 1/3).
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The results (3.21)+(3.23) are mathematically identical with those for the corresponding
problem of diffraction of acoustic plane wave by two co-planar and parallel perfectly
rigid strips or by two parallel slits in an infinite soft screen. In the limit when ¢ — 0, results
(3.21)3.23) agree with the known results for the problem of diffraction of an acoustic plane
wave by a perfectly rigid strip [5] or by a slit in an infinite soft screen [6]. This serves as
another check on the above results.

Acknowledgment—We are thankful to Mr. B. K. Sachdeva for his help in the numerical work.
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AGcrpaxr—Peiuactca 3anaua ROPAKUKY HOPMANRHO YIARPRIOIIMX NPONOABHBIX M AHTHIAOCKMX BOHH
COBHI'a, BbI3BAHHLIX IBYMS MADANCILHMMK # KOMIUIAHAPHMIMU Tpeitnnamu T'puddurca, NOrpYMCHHMMK
B8 Geckoneunoit, w3orponmodt, ynpyro#i cpeme. Onpenenmorcs npubnuxennbie $opMynn ans nons
NEPEMELIKHII TCH30pa Hanpaxenul, PaXTOPOB HHTCHCHBHOCTH HANDAKCHHHA, AMIIMTYA ANX AAn€xHX
fonecH ¥ PacCesHUS B MONCPEYHBIX CEYCHHAX, IUIN-CAYYast, XOIA2 JTMHU BOAH NBARIOTCH GONBUMME 1O
CPAaBHEHHIO C PACTOAHMEM IBYX BHEUIHMX KpacB AByxX rpeiims. Mcnomlys npubminkensbic npenensi
MOJIYYAIOTCA Pa3Hbie MHTEPECHbIC H HOBbIC Pe3ysbTaThl, [danee onpeaeaseTcs PEMICHHE COOTRECTBYIOMICH
3anayuK AndpakunK 118 MIOCKOR, aKYCTHYECKOR BOJTHBI, BHI3BAHHON NBYMS KECTKUMH H KOMIUTAHaPHLIMU
TIONOCAMH.



