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DIFFRACTION OF ELASTIC WAVES BY TWO COPLANAR
GRIFFITH CRACKS IN AN INFINITE ELASTIC MEDIUM

D. L. JAIN and R. P. KANWAL

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania

Abstract-The problem of diffraction of normally incident longitudinal and antiplane shear waves by two
parallel and coplanar Griffith cracks embedded in an infinite, isotropic and homogeneous elastic medium is
solved. Approximate formulas are derived for the displacement field, stress tensor, stress intensity factors. far­
field amplitudes and scattering cross section when the wave lengths are large compared to the distance between
the outer edges of the two cracks. By taking appropriate limits we derive various interesting and new results.
Furthermore, we derive the solution of the corresponding problem of diffraction of a plane acoustic wave by two
rigid coplanar and parallel strips.

I. INTRODUCTION

THE problem of diffraction of elastic waves by various two and three-dimensional con·
figurations ofpractical interest has attracted considerable attention. In this paper we present
the solution of the problem of diffraction of normally incident longitudinal and antiplane
shear waves by two symmetrical coplanar Griffith cracks located in an infinite. isotropic
and homogeneous elastic medium, The faces ofeach of the cracks are assumed to be separa·
ted by a sman distance so that, during small deformations of the solid. the crack faces do
not come into contact. A simple integral equation technique enables us to obtain approxi·
mate values of the displacement field, stress tensor, stress intensity factors. far·field ampli­
tudes and scattering cross section. In the elastostatic limit, we derive the value of the stress
distribution in the neighborhood of two parallel and coplanar Griffith cracks which are
opened by a constant pressure along the cracks. The limiting results so obtained agree with
those obtained by Lowengrub and Srivastava [1].

By making the distance between the inner edges of the cracks tend to zero, we solve the
diffraction problem for a single Griffith crack. The value of the stress intensity factor so
deri~ed agrees with the one given by Mal [2] while the formula for the scattering cross
section even for this limiting case appears to be new. Furthermore. from our analysis we
also obtain the formula for the scattering cross section of two perfectly rigid parallel and
coplanar strips in acoustic diffraction.

Consider a rectangular cartesian coordinate system such that these cracks are located
in the region -a ~ x ~ -b. b ~ x ~ a. - ro < y < 00, Z = O. It is convenient to nor­
malize all lengths with respect to a which is half of the distance between the outer edges of
these cracks. Then by setting c = bla, the cracks are defined by equations- 1 ~ x 5; - c,
c ~ x ~ 1, - 00 < y < 00. Z = o.

Let a plane harmonic elastic wave (the factor e- i",r is suppressed throughout the analysis)
originating at z = - 00 be incident normally on the cracks. This wave can be decomposed
into a longitudinal (or P) wave and a shear (or S) wave. The displacement field in the P
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( 1.1)

wave is parallel to the direction of propagation which in the present case is the :-axis.
The speed of P wave is {(..i +2tt)/Po}t, where A, tt are the Lame constants and Po is the density
of the medium. The S wave has a displacement field polarized in the plane perpendicular
to the direction of propagation i.e. the plane z = 0 and its speed is (1-lIPo)t. The S wave can
be further decomposed into SV and SH waves. They produce the displacement fields
parallel to x-axis and y-axis. respectively. As is well known, the boundary value problems
associated with each of the above three components of the incident field can be formulated
independently of the other two. Since the diffraction problems relating to SV and P waves
are similar in nature we shall consider only the SH wave.

The dimensionless numbers in this analysis are

_(w 2poa
2)t _ (w 2Poa

2 )tmt - , 2 ' m2 - ,11.+ I-l I-l

2. INCIDENT P WAVE

In this case the incident field u(O'(x, z) is given as

(2.1)

where e3 is the unit vector along z-axis. Thus, the only non-vanishing components of the
incident displacement and stress fields are

(2.2)

(2.3)U~x.z) = 0,

where Po = - POQ2(J)2Ao.
The scattered field u(x, z) can be represented completely in terms of two scalar potentials

4>f,x, z),j = 1,2, such that

04>1 Of/>2
Ux(x, z) = ox - oz '

(2.5)

(2.4)

(2.6)

and q,1 and <P2 satisfy the Helmholtz equations

V2epj+m;q,j = 0, j = 1,2.

The values of the components of the stress tensor are

{
02epl ifJ.<P2 a2.ep2}

r xz = tt .2axoz + ox2 - az2 ' !y: = 0,

r n = -1-l{(mi+2::2)epl-2~:~;}.
The boundary conditions are

rxz(x, z) = 0, t'zz(x, z) + ~~)(x, z) = O. z = 0, c ~ Ix! ~ 1. (2.7)

ux ' u:l:t r.n and t u are continuous across z = O.lxl < c, Ixl > 1. (2.8)

In addition, we have to satisfy the radiation conditions at infinity and the edge conditions
at the tips of the cracks.
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We seek the solutions of the Helmholtz equations (2.4) in the form

foo ( 1 )P(P).<Pl(X, z) = - i p2 --m~ - e,p,X-yd:1 dp,
-00 2 11

(2.9)

and

z~ 0, (2.10)

where

(2.11 )j =: 1,2,{
(p2 2)1--mj ,p ~ mj'

}'j = . 2 21-
-/(mj -p) ,p::;; mj ,

and where Pep) is an unknown function to be determined from the remaining boundary
conditions. Putting these values in the representation formulas (2.3), (2.5) and (2.6) we
obtain

(2.12)

U:(X,z) = ±if~}(p2-tm~)e-Yd:l_p2e-Y2I:IJP(P)ejP'xdP'Z ~ 0,

t.x=(x,z) = +J1. f~:x: p[(2p2-m~)e -Yd:I_(2p2-m~)e-Y*IJP(p)ejP'xdp,z ~ 0,

tn(x, z) = J1.i foo [~2 -!m~)(m~-2p2)e-YII:1 +2p2Y2 e-Y2I%~ Pep) eip,X dp.
-00 }l J

(2.13)

(2.14)

(2.15)

(2.16)X> 1,

With the help of the foregoing relations, the boundary conditions (2.7), (2.8) and the
evenness of the function Pep) yield the dual integral equations

{OO Pep) cos px dx = 0, Ixi < c,

and

J
eL

[ 2 1 2 1. 2 2J ipoo P 12 - ;(p -~m2) Pep) cos px dp = 4J1'

To solve them we set

c::;; Ixi ::;; 1. (2.17)

(2.18)1flP(p) = - h(XI) sin PXl dx l ,

P c

where the function h(xi) will be soon determined. For the intervallxl > 1, equation (2.16)
is automatically satisfied in view of the formula

I

n
. -,Ixl < x ,

fo
oo

sm px ~cos px dp = 2 1

O,lxl > Xl'

(2.19)
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(' :s; Ixl :s; 1,

Furthermore, from equations (2. 16H2. 19) we derive the following relations in h(xf):

JIf.oo ip JI f.ooh(xf) sin px I cos px dp dx I = 2 ( 2 ~ 2) + h(xi)
c 0 J1. m2 ml c 0

{
2 [ 2 1 2 I 22J} . d dx 1-( 2 2) p 1'2-:-1-P -2m2) smpxlcospx P XI'

m2- ml P Y1

and

f h(xf) dXI = O.

By using the relations

and

(2.20)

(2.21 )

(2.22)

(2.23)J (px) = (2P)t f.x wJo(pw) dw
t 1tX 0 (x 2 - w 2)t '

and after some simple manipulations, equation (2.20) can be written as the integro-differen­
tial equation:

JIxlh(xDdxl = ~p +~JI h(x2 ) f.x f.Xl vwL1(v, w)dvdwdx 1
c xf - x 2 2m~ 0 dx c I 0 0 (x 2 _ w2)t(xi _ v2)t ' c :s; X :s; 1, (2.24)

where

and

Thus, the function h(xf) is to be determined from equations (2.24) and (2.21).
By using Noble's contour integration technique [3], the kernel LI(v, w) can be written

as

(2.26)

The value of this kernel for w < v is obtained by interchanging v and w. The form (2.26)
is suitable for expanding Ltlv, w) in powers of 1n 1 and 1n2 such that m2 « 1. Thus In l « 1,
In l = O(ln2)' When we substitute the series expansions for the Bessel function J o and the
Hankel function H~1), we get from (2.26)

v> w, (2.27)
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where

(3t4
- 4t2 +3)

Cl == 4(1-t2)

(3t
4
-4t2 + 2) 1t(2Y .) log 2 4 2

C2 == 4(1-t2) logt+2 -;-1 Cl 4(1-t2Plt -12t +5)

4
+-[N2(1 +t2)+t2N 0]'

1t

(2.28)

(2.29)

n == 0,1,2, ... , (2.30)

and Yis Euler's constant.
In particular

1t
No == -8(1+log4), (2.31)

Let us now expand h(xi) in the form

h(xI) == -;[ho(xD+(m~ log m2)h 1(xt>+ m~h2(xi)+m~(log m2)2h3(xt>+O(m~ log m2)]' (2.32)
m2

and substitute this expansion as wen as the expansion (2.27) of L 1(v, w) in equation (224),
equate the coefficients of equal powers of m2' Thereby we get the following equations for
determining the unknown functions htxf), i == 0, 2, 3, ... :

f
l xlh~XI)~Xl == ~2Po, C~ Ixl:s;; 1: fl ho(xi)dx 1 == 0, (2.33)

c Xl -X c

c~x~l; (2.34)

{
log v; v ~ W}d d dxvw v W

f
l X h (x2)dx d fl iXixl log w· w > V 11 2 1 1 _ h ( 2) , ---c- OXI

c xi - x 2
1 dx cOO (x2- w2)1-(xi - v2 )1-

c~x~l;

c~x~l;

f h2(xj) dx 1 == 0,

f h3(xI) dX 1 == O.

(2.35)

(2.36)

and so on. It has been shown by Lowengrub and 'Srivastava [1] that the solution of the
integral equation

c ~ Ixl ~ 1, (2.37)
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f h(x~) dXl = 0,

where f(x) is a known even function, is

(2.38)

2 2(X~-C2)tfl(I-X2)tX/(X) 2 fl(I-X2)t
h(xl) = -- -1-2 ~ ~dx+ F( 2_ .21-(1- 2)t 2_ 2 x/(x)dx11: XI c X e X XI 11: XI c) XI C X C

fl (x~-e2)t~
x 1 2 2 2'

c -Xl X -Xl
(2.39)

while F = F(1I:(2, (l-e 2)!) is the elliptic integral of the first kind.
With the help of relations (2.37H2.39) we obtain the solutions ofequations (233H2.36)

as

(2.40)

(2.41)

(2.42)

(2.43)

where £ = £(11:(2, (1 - c2)!) is the elliptic integral of the second kind and n is the elliptic
integral of the third kind

1'1' dlX
n(<p,n

2
,k) = (l 2· 2 )(1 k2 ·' )to -n sm IX - sm-IX

and

e2 2 cl[.z (I_C2
)t 2£ (l-C2

)tJdo = --{l+c -2£(F]-- (l+c ) log -- --log .
2 2 e F e

Thus, the value of the required function h(xi) is known up to O(mi log mz).
Let us now evaluate some quantities of physical interest.
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Stress intensity factors

The stress intensity factors K 1 and K 2are defined as (in physical units)

K 1 = lim (a)t[(x-l)t{Tn (X,O)}].x>I'
.x-+l+

K 2 = lim (a)t[(c-X)t{Tu(X,O)}].x<c'
x-'c-

(2.44)

(2.45)

The value of the stress component Tn can be evaluated from the formulas (2.15) and (2.18)
when we substitute the value of the function h(xi) as obtained above. We spare the reader
of the details. After evaluating the value of Tu and putting it in relations (2.44) and (2.45)
we obtain

(2.46)

(2.47)

(2.48)

and

K2 = [a:lo~~2)Jt {(ElF _c2
)_ c~(l +c2- 2EIF)(EIF -c2)m~ log m2

[
2 C1 ( E 2 c

2
c

4
) {2 2 I}] 2+ do(EIF-c )-2" 6F(I+c )+"6-2 -C1 (EIF-c )(1-EIF)+(l-c )F2 m2

c
2

}+ ; (1 + c2- 2EIF)2(EIF - c2)(m~ log m2)2 + O(m~ log m2) .

We have plotted the values of K 1 and K 2 in Figs. 1 and 2 (for T2 = 1/3).
In the limit when c --+ 0, we recover the stress intensity factor for one Griffith crack

occupying the region Ixi :::; a, - 00 < y < 00, Z = 0:

poJa { Cl 21 C2 2 ci 2 2 4 }K 1 = J2 I-2 m2 ogm2-2m2+4(m210gm2) +O(m210gm2) ,

which agrees with the result of Mal [2J.
On the other hand, when co --+ 0 (the elastostatic limit), i.e. m1 , m2 --+ 0 and Ao --+ - 00

such that Po tends to constant pressure PI' relations (2.46) and (2.47) yield the stress in­
tensity factors when two Griffith cracks are opened under constant pressure PI' These
limits are

(2.49)

which agree with the results given by Lowengrub and Srivastava [1].
Let us observe that by assuming the solution in the form (218) we have satisfied the

edge condition as this relation implies that the stresses at the crack tips have the required
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square root singularity. Indeed, if we calculate the value of the component U: of the normal
displacement at the face of the crack and use reJation (2.20), we find that uz(x, 0±) == 0,
at x == 1 and x == c.

Far..,jield amplitude and scattering cross section

It is convenient to introduce polar coordinates.

x == Rsin6, z == Rcos6.

'1; 0'6
~

<l.
,5
.2 ~__-----
~ 1>5".'>
.sf
~
<; 0·4 CoO-5
M ------,.-;.~--

f
" 0·3

l
0·~:---;:():";-.I--::o-:';;t.---;O.-';.3:----.:0""I~-=O~':;---;:;O:':;4,......-;:Ot:<.1:---;:Ot<..:---O"Jt·9~-:'I_o·

mz

FlO. 2.

(2.50)



(2.51)

(2.53)

(2.54)

(2.55)
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Then from relations (2.9) and (2.10) we readily derive, by the method of steepest descent,
the asymptotic formulas

9 exp i(m lR-n/4) f. t 2( . 2 1 ) . 1
cPl(R, )..., (m1R)t 1(2n) m1 SID 8- 2-r2 P(m 1 SID 9)S '

and
exp i(m R -n/4) . .

cP2(R,9) ..., (m2~)t {(2n)t(mi SID 9 cos 9)P(m2 SID 9)}, (2.52)

as R ..... 00. Hence, the asymptotic values of the displacements uR(R, 9) and uf/(R, 9) follow
by putting the above values in relations (2.3). The results are

iexpi(mlR-n/4) t 3( . 2 1 ) .
uR(R,9) ..., (m1R)t (2n) m1 SID 9- 2-r2 P(m 1 SID 9),

i exp i(m2R - n/4). .
u~R, 8) ..., (m

2
R)t (2n)tm~ SID 8 cos 8 P(m2 SID 8),

as R ..... 00, where

P(m j sin 8) = 4(~~A-r°2)[(1 +c2-2E/F)-tct(1 +c2-2E/F)2mi log m2

2{ 2 C t ( 1 c
2

E 2 )+m2 do(1 +c -2E/F)-2 4+6'- 3F(1 +c )

-c1 [(1 +c2-2E/F)(1-E/F)-2(1-c2);2 +~«(1 +c2)E/F-(3-c2»]}
c2

m~ (3 c2 3 E )+ ;(1 +c2-2E/F)3(mi log m2)2--f sin2 8 4+2+4c4-P(1 +c2)

+O(mi log m2)]. j = 1,2.

Hence, the radiation condition is satisfied. Writing relation (2.53) as

uR(R,8) ... (n:tR)*( exp i(mlR-i) )g(8) ,

we have the value of the scattering cross section [4],

4aL = -Z-AJ(g(O»
p m1 0

n2am3(3-r4-4-r2+ 3)
= 3~-r(1--r2)2 [(1 +c2 -2E/F)2+O(mi logm2)]. (2.56)

In the limit when c ..... 0, we get the corresponding value for one Griffith crack

n2am~(3-r4 - 4-r2+ 3)
~ = 32-r(1 _ -r2)2 [1 + O(m~ log m2)]' (2.57)

As far as the authors are aware even this limiting formula is new. We have plotted the
formula (2.56) for the value of (L"Ia) in Fig. 3.
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o 0·1

FIG. 3.

3. INCIDENT WAVE IS 5H WAVE

For an incident SH wave we have

(3.1)

where ez is the unit vector along the y-axis. Thus, the only non-vanishing components of
the incident field and the corresponding stress tensor are

(3.2)

(3.3)z ~ 0,

where qo = - J,lBomz. Consequently, the displacement vector and the corresponding stress
tensor due to the scattered field have, respectively, u, and f,: as the only non-vanishing
components needed in the sequel. As in the previous section we assume their values as

uy(x, z) = =+= f~(() Q(P) eipx
- nl:1 dp,

and

f,: = J,l f~(() yzQ(P) eipx-Y2I:! dp,

where yz is defined as in (2.11).
The boundary conditions for this problem are

f,.+f~~) = 0, Z = 0, C $ Ixl $ 1,
u, and f,. are continuous across z = 0, Ixl < C, Ixl > 1.}

(3.4)

(3.5)

In addition, the radiation condition and the edge condition are to be satisfied. Relations
(3.4) and (3.5)1 yield

C$x$1, (3.6)
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while from (3.3) and (3.5) we obtain

folX) Q(P) cos px dp = 0, O:s;; Ixl < c, Ixl> I,

where we have used the even character of the unknown function Q(P).
As in the previous section we set

1flQ(P) = - g(xi)sinpx I dxl ,
p c

(3.7)

and follow the same steps which led us to the integro-differential equation (2.24). The
corresponding equation for the present problem is

fl xIg(xr)dxl =::Q ~fl ( 2) ('" ("" wvL2(v, w)dvdwdx l ,
(xi-x2 ) 2 Om2+ dx c g Xl Jo Jo (X2_W2)t(xi-v2)t'

subject to the condition

f g(xi) dx l = 0,

where Qo = - Qo/(jJ.1tm2 ) = Bol1t, and

c :s;; Ixl :s;; I, (3.8)

(3.9)

v> w, (3.10)

with v and w interchanged when w> v. In this case also, our analysis is based on the
assumption m2 « 1; and the expansion of L 2(v, w) is

where

e1 = to + i1t-2y+4log 2).

v> w, (3.11)

(3.13)

(3.14)

Now we put the expansion

g(xi) = m~o(xi)+m~ log m2g1(Xn+m~g2(Xn+m2(m~ log m2)2g3(Xn+O(m~ log m2), (3.12)

and the expansion (3.11) of L 2(v, w) in equations (3.8) and (3.9) and equate the coefficients
of equal powers of m2. The resulting integral equations in functions go, gl' g2' g3' can be
solved in a fashion similar to equations (2.33H2.36). These solutions are

2 Qo(xi - ElF)
go(x 1) = {(xi -c2)(I-xf)}t'

2 Qo 2 (xi -ElF)
gl(X 1) = -4(1 +c -2EIF) {(xi-c2)(I-xmt '
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(
2 _ Q [eo(xi - EIF)-±[(xi - c2)(xi -1-(1- c2»-(EI6F)(1 +c2)+(c4 /2 -C2/6)]]

g2 Xl) - 0 {(xi -c2)(I-xi)}t

[

(xi - EIF)( 1- ElF) +{xi(xi - c2)} ]

_ Qo x {(IIF)n(7t/2, (1-c2)/(I-xf), (l-c2)t)-I} -(I-c2 )IIF2

2 {(xi -c2)(1-xmt '

2 _ Qo 2 2 (xi-ElF)
g3(X I ) -16(1 +c -2EIF) f(xi-c2)(I-xf)}t

where

e 1~ (I-C
2)t 2E (I-C

2)t]eo = ....!.(I+c2-2EIF)-- (1+c2)10g -- --log .
2 4 e F e

Thus, we have obtained the value of the unknown function g(xf) up to O(m~ 10gm2).

Stress intensity factors
Using the foregoing relations in (3.4), we obtain

IIXIg(xDdXI II 2 f.xf.x'WVL2(V,W)dVdWdxl
[tyz(x, O)]x> I = 21-t 2_ 2 21-t g(XI) ( 2_ 2)t( 2_ 2)t .

o~x<c C XI X Coo X W XI v

Then the stress intensity factors (in physical units) are

K I = lim (a)t{(x -1)t[tyz(X' O)]x> J
X .... I +0

= {2(i~::)}t {(1-EIF)-~(1 +c2-2EIF)(I-EIF)mi log m2

[ 1{I c
2

E 2 } 1{ 2 2 ( I )}] 2+ eo(l-EIF)-4 2-6"-6F(I+c) -2 (1-EIF) -(I-c) I+ F2 m2

+ 11
6

(1 +c2- 2EIF)2(1- EIF)(mi log m2)2 +O(m110g m2)} ,

K 2 = lim (a)t{(c-x)t[1:yz(x,O)]x<c},
x-c-

(3.15)

(3.16)

(3.17)

(3.18)

= {2c(ql0~~t2)}t {(ElF -c2)-~(1+c2-2EIF)(EIF -c2)mi log m2

[
( 2 1{ E 2 c

2
c

4
} 1 5, 2 2 I}] 2+ eoEIF-c )-4 6F(I+c )+6"-2 -21(EIF-C )(I-EIF)+(I-c )F2 m2

+ 1
1
6(1 +c2-2EIF)2(EIF -c2)(mi log m2)2+O(m110g m2)}. (3.19)

These values of K I and K 2 are plotted in Figs. 4 and 5 (for 1:2 = 1/3).
When c -+ 0, we recover the stress intensity factor for a single crack which agrees with

Mal's result [2].
On the other hand in the elastostatic limit, when (J) -+ 0 i.e. ml , m2 -+ 0 and Bo -+ - 00

such that qo -+ QI' relations (3.18) and (3.19) yield the stress intensity factors when the
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o 0,' 02 0·3 0-4 0-5 O~ 0·1 0·8 0'9
m2

FIG. 4.

j·o

faces of two Griffith cracks are subjected to prescribed constant shearing stress, namely

Thus in this case,

z = 0, c ::; Ixl ::; 1.

(3.20)

As pointed out in the case of P-wave, we have satisfied the edge condition by assuming
the solution in the form (3.7).

o 0,'

FIG. S.
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Far-field amplitude and scattering cross section

To find the far-field amplitude we proceed as in Section 2 and find that

u)R,O) '" (_2_)+ {exp i(m 2R-1t/4)}j(O) as R ..... 00, (3.21)
1tm 2R

where

(3.23)

j(O) = -iBom~ cos O{(l +c2- 2EIF)-t1 +c2 -2EIF)2m~ log m2

2[ 2 1( 1 c
2

1 4 E 2) 1+m2 eo(l +c -2EIF)-'4 4+6"+4" -3£<1 +c ) -2

x {(l +c2- 2EIF)(I-EIF)-2(I-c2~+~[(1 +c2)EIF -(3 _C
2)]}

sin
28(3 c

2
3 4 SI 2))J

--6- '4+2+4" -r +c

+ 1
1
6(1 + c2- 2EIF)J(m~ log m:z)2 +O(m~ log m2)} . (3.22)

Thus the radiation condition is satisfied. From (3.21) and (3.22) we have the value of the
scattering cross section (in physical units) [4],

~ = -~.1'(j(O))
m1Bo

1t2amJ

= T[(1+ c2 - 2EIF)2 + O(mi log m:z)].

The value of (l:,Ja) is plotted in Fig. 6 (for 't1 = 1/3).

2'8

o 0·1 0·2 o-a

N

'2 2·4..

FIG. 6.
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The results (3.21H3.23) are mathematically identical with those for the corresponding
problem of diffraction of acoustic plane wave by two co-planar and parallel perfectly
rigid strips or by two parallel slits in an infinite soft screen. In the limit when c -+ 0, results
(3.21H3.23) agree with the known results for the problem ofdiffraction ofan acoustic plane
wave by a perfectly rigid strip [5J or by a slit in an infinite soft screen [6J. This serves as
another check on the above results.
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AGcTpaIcr-PewaeTCll 3ll.lla'la .ll~KUHH HOPMlIJJWIO Y.llllPflJOWIIX npo.llonbHWX M aHTJlMOCJ:HX .aMH
C.llBHra, BIoI3811HHWX .ll8yMlI IIapanenltHWMH II 1I:0000000HapHIoIMH TpeIUHHaMH rPH....n:a, norp)'llCCllHIoIMH
B 6«ICOHe'lHOIt, H30-rpoDHOIt, ynpyrolt cpe.lle. Onpe.lleJISJOTClI npH6nnceHHWe toPMY1llol .lVui nona
nepeMewlCHHIT TeH30pa HllIIplDKeHHIt, 4JaICTOPOB HHTeHCHBHOCTH HanplIlICeHIIl, aMnDH.TY.ll .llJIa .llanelCHlI.
noneA: M paCCCllHMlI B nonepe'lHWlI. CC'leHHlIX, .llJIa..cJIY'UlA, xorn .ll1IMHll 80nH A8J1l1JOTClI 60nbwHMH no
cpaBHeHHIO C paCTOllHHeM .llByX BHeWHHlI. ICpaeB .llBYX TpeWHH. H'eno1llt3yA npH6nmKeHHWe npe.llenlt'
nony'lalOTCli pa3Hble HHTepecHwe H HOBbie pe3ynbTaTbI • .lJ.anee onpe.llenAeTCli peweHHe COOTBeCTBYlOwelt
3B,lla'lH llHljlpaKUHH .ll1I11 nnocKolt, aKycTH'IecKolt 8OnHbI, BW3811HHOIt llByMlI )KeCTICHMH H ICOMnnaHapHWMH
nonoC8MH.


